Others to add

Code transformation tools have evolved significantly over the years, each offering unique approaches to programmatic code manipulation. Let’s explore the strengths and limitations of major frameworks in this space.

Python’s AST Module

Python’s built-in Abstract Syntax Tree (AST) module provides the foundation for Python code manipulation.

Strengths

  • Native Python implementation
  • No external dependencies
  • Full access to Python’s syntax tree
  • Great for Python-specific transformations

Limitations

  • Python-only
  • Low-level API requiring deep AST knowledge
  • Manual handling of formatting and comments
  • No cross-file awareness
import ast

class NameTransformer(ast.NodeTransformer):
    def visit_Name(self, node):
        if node.id == 'old_name':
            return ast.Name(id='new_name', ctx=node.ctx)
        return node

LibCST

Meta’s Concrete Syntax Tree library offers a more modern approach to Python code modification.

Strengths

  • Preserves formatting and comments
  • Type annotations support
  • Visitor pattern API
  • Excellent documentation
  • Supports codemods at scale

Limitations

  • Python-only
  • Steeper learning curve
  • Slower than raw AST manipulation
  • Memory-intensive for large codebases
import libcst as cst

class NameTransformer(cst.CSTTransformer):
    def leave_Name(self, original_node, updated_node):
        if original_node.value == "old_name":
            return updated_node.with_changes(value="new_name")
        return updated_node

jscodeshift

The pioneer of JavaScript codemods, jscodeshift remains a staple in the JS ecosystem.

Strengths

  • Robust JavaScript/TypeScript support
  • Rich ecosystem of transforms
  • Familiar jQuery-like API
  • Battle-tested at scale

Limitations

  • JavaScript/TypeScript only
  • Limited type information
  • Can be verbose for simple transforms
  • Documentation could be better
export default function transformer(file, api) {
  const j = api.jscodeshift;
  return j(file.source)
    .find(j.Identifier)
    .filter((path) => path.node.name === "old_name")
    .replaceWith((path) => j.identifier("new_name"))
    .toSource();
}

ts-morph

A TypeScript-first transformation tool with rich type system integration.

Strengths

  • First-class TypeScript support
  • Excellent type information access
  • High-level, intuitive API
  • Great documentation
  • Project-wide analysis capabilities

Limitations

  • TypeScript/JavaScript only
  • Higher memory usage
  • Can be slower for large projects
  • More complex setup than alternatives
import { Project } from "ts-morph";

const project = new Project();
project.addSourceFileAtPath("src/**/*.ts");
project.getSourceFiles().forEach((sourceFile) => {
  sourceFile
    .getDescendantsOfKind(SyntaxKind.Identifier)
    .filter((node) => node.getText() === "old_name")
    .forEach((node) => node.replaceWithText("new_name"));
});

ast-grep

A modern, language-agnostic code searching and rewriting tool.

Strengths

  • Multi-language support
  • Fast pattern matching
  • Simple YAML-based rules
  • Great for quick transformations
  • Excellent performance

Limitations

  • Limited complex transformation support
  • Newer, less battle-tested
  • Smaller ecosystem
  • Less granular control
rules:
  - pattern: old_name
    replace: new_name

tree-sitter

The foundation many modern tools build upon, offering lightning-fast parsing and analysis.

Strengths

  • Incredible performance
  • Multi-language support
  • Incremental parsing
  • Language-agnostic design
  • Growing ecosystem

Limitations

  • Lower-level API
  • Requires language-specific grammars
  • Manual handling of transformations
  • Steeper learning curve
const Parser = require("tree-sitter");
const JavaScript = require("tree-sitter-javascript");

const parser = new Parser();
parser.setLanguage(JavaScript);
const tree = parser.parse('console.log("Hello")');

Choosing the Right Tool

The choice of codemod framework depends heavily on your specific needs:

  • Single Language Focus: If you’re working exclusively with one language, use its specialized tools:

    • Python → LibCST
    • TypeScript → ts-morph
    • JavaScript → jscodeshift
  • Multi-Language Projects: Consider:

    • ast-grep for simple transformations
    • tree-sitter for building custom tools
    • A combination of specialized tools
  • Scale Considerations:

    • Small projects → Any tool works
    • Medium scale → Language-specific tools
    • Large scale → Need proper tooling support (LibCST, ts-morph)

The Future of Codemods

As codebases grow and AI becomes more prevalent, we’re seeing a shift toward:

  1. More Intelligent Tools

    • Better type awareness
    • Improved cross-file analysis
    • AI-assisted transformations
  2. Universal Approaches

    • Language-agnostic frameworks
    • Unified transformation APIs
    • Better interoperability
  3. Enhanced Developer Experience

    • Simpler APIs
    • Better debugging tools
    • Richer ecosystems

The ideal codemod framework of the future will likely combine the best aspects of current tools: the type awareness of ts-morph, the simplicity of ast-grep, the performance of tree-sitter, and the reliability of LibCST.

Was this page helpful?